범주형 데이터 인코딩 방법의 모든것 – 데이터 과학자 필수 지식

인코딩 thumnail

데이터 과학과 머신러닝 분야에서, 데이터는 전처리 모든 분석과 예측 모델링의 가장 중요한 과정입니다. 특히 범주형 데이터는 다양한 분야에서 중요한 정보를 담고있는 경우가 많습니다. 범주형 데이터는 일반적으로 텍스트 형태로 저장되며, 기계 학습 모델이 이해할 수 있도록 숫자 형태로 변환하는 과정이 필수적입니다. 이 과정을 “인코딩(Encoding)”이라고 합니다. 데이터의 정보를 숫자로 표현하는 방법에 따라 머신러닝 모델의 성능이 크게 달라질

피처 엔지니어링이란? – 정의부터 고급 실무 기술까지

피처-엔지니어링-image3

1. 서론 – 피처 엔지니어링의 중요성 데이터 과학과 기계 학습의 세계에서, 정교한 모델과 고급 알고리즘이 중요한 역할을 하지만, 이들의 성공은 종종 데이터의 품질과 구조에 크게 의존합니다. 이러한 맥락에서 피처 엔지니어링은 데이터 과학 프로젝트의 성패를 좌우하는 핵심 요소로 자리 잡고 있습니다. 그렇다면, 피처 엔지니어링이란 무엇일까요? 이 기사에서는 피처 엔지니어링의 기본 개념, 중요성, 그리고 그것이 데이터 과학과