변수와 데이터 유형 : 데이터 과학 기초 통계학

데이터 유형

변수의 이해 변수란 무엇인가? 변수는 데이터를 표현하는 데 사용되는 속성이나 특징입니다. 통계학에서 변수는 관찰하거나 측정할 수 있는 어떤 것으로, 연구 대상이 가지는 다양한 특성을 나타냅니다. 예를 들어, 연구 대상이 사람일 경우, 키, 몸무게, 성별, 나이 등이 변수가 될 수 있습니다. 이러한 변수를 통해 우리는 데이터를 수집, 분석하고, 결론을 도출할 수 있습니다. 변수의 중요성 및 통계학에서의

통계학 기초, 응용분야 및 역사적 배경

통계학 기초

1. 통계학 기초 1. 통계학의 중요성 및 응용 분야 통계학은 데이터를 통해 세상을 이해하고 예측하는 강력한 도구입니다. 현대 사회는 데이터의 홍수 속에서 살고 있으며, 이러한 환경 속에서 통계학은 더욱 중요해졌습니다. 데이터는 지식을 생성하고 의사결정 과정에 필수적인 근거를 제공합니다. 통계학은 이러한 데이터를 분석하고 해석하여, 복잡한 현상을 이해하고 미래를 예측하는 데 필수적인 역할을 합니다. 2. 의사결정에서의 역할

워드클라우드 분석이란? 시각화 만드는법 마스크 이미지

워드클라우드

1. 워드클라우드란? 워드클라우드(Word Cloud)는 텍스트 데이터에서 자주 등장하는 단어들을 시각적으로 돋보이게 표현하는 방법 중 하나입니다. 이 시각적 도구는 데이터 시각화, 문서 분석, 온라인 콘텐츠 마케팅 등 다양한 분야에서 널리 활용되고 있습니다. 특히, 대량의 텍스트 정보를 빠르게 파악하고, 중요한 키워드를 한눈에 인식할 수 있도록 도와주기 때문에 매우 유용합니다. 1. 워드클라우드의 정의와 중요성 워드클라우드는 텍스트 내 단어의

[Python] 표본편차와 표본분산 차이 – 통계 파이썬 예제 코드 공식 데이터 분석

표본분산-표본편차-thumnail

1. 표본분산과 표본편차의 개념 통계학에서 표본분산과 표본편차는 데이터 집합의 변동성을 측정하는 핵심적인 도구입니다. 이들은 데이터가 평균값으로부터 얼마나 퍼져 있는지를 나타내며, 이를 통해 데이터 집합의 일반적인 특성을 이해할 수 있습니다. 2. 표본분산이란? 1. 표본분산의 정의 표본분산은 주어진 데이터 집합 내에서 각 데이터 포인트가 평균값에서 얼마나 멀리 떨어져 있는지를 측정하는 통계적 척도입니다. 수학적으로, 표본분산은 각 데이터 포인트와

[python] 표준오차 표준편차 차이 – 통계 파이썬 예제 코드 데이터 분석 실습 공식

표준오차와-표준편차-thumnail

1. 표준오차와 표준편차 개념 이 글에서는 통계학의 두 중요한 개념인 ‘표준편차(Standard Deviation)’와 ‘표준오차(Standard Error)’에 대해 집중적으로 다루고자 합니다. 이 두 용어는 종종 혼동되곤 하지만, 각각 매우 다른 의미와 용도를 가지고 있습니다. 표준편차는 데이터가 평균값에서 얼마나 퍼져있는지를 나타내는 척도입니다. 이는 데이터 집합의 변동성을 측정하는 데 사용되며, 데이터의 일관성과 예측 가능성을 이해하는 데 중요한 도구입니다. 반면, 표준오차는

[Python] 표준 편차 란? – 공식 뜻 의미 계산 구하기 식 기호 구하는법

표준편차-thumnail

1. 표준 편차란 무엇인가? 1. 정의 및 의미 표준 편차는 통계학에서 매우 중요한 개념으로, 데이터 집합 내의 변동성 또는 분산도를 측정하는 데 사용됩니다. 간단히 말해서, 표준 편차는 데이터 포인트들이 평균(또는 기대값)으로부터 얼마나 떨어져 있는지를 나타내는 수치입니다. 데이터 값이 평균에 가까울수록 표준 편차는 작아지고, 데이터 값이 평균에서 멀리 퍼져 있을수록 표준 편차는 커집니다. 표준 편차를 통해

[Python] 선형 회귀 분석 모델 이란? 정의 부터 파이썬 알고리즘 예제 실습 코드

선형-회귀-thumnail

1. 선형회귀 모델의 중요성 선형회귀는 데이터 과학과 머신러닝 분야의 기초가 되는 아주 중요한 역할을 하고있습니다. 딥러닝과 같은 복잡한 알고리즘과 기술이 빠르게 발전하고 주목을 받는 현대에서도, 선형 회귀는 간결함과 동시에 강력함으로 여전히 많은 전문가들이 꼭 다룰 줄 알아야하는 개념으로 자리잡고 있습니다. 현재 우리의 일상은 데이터로 가득 차 있으며, 이 데이터 속에서 끊임없이 유의미한 인사이트를 찾아 내는

[Python] R2 결정 계수 란? 파이썬 실습 코드 통계 데이터 분석

결정-계수-thumnail

1. 통계에서 R² (결정 계수)의 중요성 통계학, 데이터 과학 분야에서는 예측 모델의 정확성과 신뢰성을 평가하기 위해 다양한 방법과 기술을 사용합니다. 이러한 방법 중 하나가 바로 ‘결정 계수’, 즉 R²입니다. R²는 모델의 설명력을 나타내는 지표로, 예측 모델이 얼마나 데이터에 잘 부합하는지를 수치적으로 보여주는 지표입니다. 특히 선형 회귀 분석에서 R² 지표의 역할은 매우 중요합니다. 여기서는 R²의 기본

[python] 잔차(Residual) 란? – 통계 데이터 분석 실습 정규성

잔차-thumnail

1. 통계학에서 잔차의 중요성 통계학은 데이터를 통해 세상을 이해하는 학문입니다. 우리는 통계 모델을 사용해 데이터에서 패턴을 찾고, 예측을 하며, 중요한 의사결정을 내리곤 합니다. 이러한 과정에서 ‘잔차(Residuals)’의 개념은 필수적입니다. 잔차는 예측값과 실제값 사이의 차이를 나타내며, 모델의 정확성과 효율성을 평가하는 데 중요한 역할을 합니다. 여기서는 통계학에서 잔차가 왜 중요한지, 그리고 어떻게 계산하고 해석하는지를 설명드리고자 합니다. 잔차를 이해하는

꼭 알아야할 유사도 계산 방법 세가지, 코사인, 피어슨, 자카드 – 데이터 분석, 인공지능,머신러닝

유사도-측정-방법-thumnail

1. 유사도 측정 데이터 과학과 머신러닝 분야에서 데이터 간의 유사도를 계산하는 과정은 필수적입니다. 이는 추천 시스템, 텍스트 분석, 고객 세분화 등 다양한 분야에서 핵심적인 역할을 합니다. 이 글에서는 파이썬을 이용하여 코사인 유사도, 피어슨 유사도, 그리고 자카드 유사도를 계산하는 방법과 각각의 차이점을 비교해보고자 합니다. 유사도 측정 방법은 데이터 집합 간의 관계를 이해하고, 이를 바탕으로 예측 모델을